

SAIE, Bologna **Precast Concrete Technology (PCT - ITALY)** SESSION B - 19 ottobre 2016

FRC Precast Structures

M. di Prisco Department of Civil and Environmental Engineering Politecnico di Milano

Outline

- comportamento strutturale del fibrorinforzato
- la classificazione
- esempi significativi di applicazioni strutturali in presenza di interazione suolo-struttura
- elementi lineari e strutture in parete sottile
- realizzazioni in HPFRC

Hybrid concrete: a large number of variables!

PULL-OUT as basic resistant mechanism

Model Code 2010

5.6 Fibre Reinforced Concrete

- 5.6.1 Introduction5.6.2 Material properties
- 5.6.2.1 Behaviour in compression
- 5.6.2.2. Behaviour in tension
- 5.6.3 Classification
- 5.6.4 Constitutive laws
- 5.6.5 Stress-strain relationship for SLS
- 5.6.6. Partial safety factors
- 5.6.7 Orientation factor

7.7 FRC structures

- 7.7.1 Classification
- 7.7.2 Design principles
- 7.7.3 Verification of safety (ULS)
- 7.7.3.1 Bending and/or axial compression in linear members
- 7.7.3.2 Shear in beams
- 7.7.3.2.1 Beams without longitudinal and shear reinforcement
- 7.7.3.2.2 Beams without shear reinforcement
- 7.7.3.2.3 Beams with shear and longitudinal reinforcement
- 7.7.3.2.4 Minimum shear reinforcement
- 7.7.3.3 Torsion in beams
- 7.7.3.3.1 Beams without longitudinal and transverse
- reinforcement
- 7.7.3.3.2 Beams with longitudinal and transverse reinforcement
- 7.7.3.4 Walls
- 7.7.3.4.1. Walls without conventional reinforcement
- 7.7.3.4.2. Walls with conventional reinforcement
- 7.7.3.5 Slabs
- 7.7.3.5.1 Members without reinforcement
- 7.7.3.5.2 Members with reinforcement
- 7.7.3.5.3. Punching
- 7.7.3.5.4. Shear in Slabs with longitudinal reinforcement
- 7.7.4 Serviceability Limit State (SLS)
- 7.7.4.1 Crack width in members with conventional
- 7.7.4.2 Minimum reinforcement for crack control

Peculiarità del materiale

Comportamento della struttura iperstatica

Comportamento della struttura iperstatica

Modulus K (N/mm ³)												
0.02 0.	04		0.06		0.10					0).2	0
General soil rating as subgrade, subbase or base												
Very poor subgrade	Poor subgrade	Fair	to good sul	ograde	Excellent subgrade	Good	subba	se	Go ba	od se	Be	st se
G - Gravel	P - Poorly gra	ded	pressibility					GC	G₩			
M-Mo, very fine sand, silt H - High compressil			ibility			GF	, 				'	
F - Fines, material less than 0.1mm						SW	1					
O - Organic W- Well graded						SĊ						
				SP								
L			1.1.1.1.1.	SF								
∤ СН			ML									
ОН	CL											
OL												
ት MH												

by di Prisco & Felicetti, 2004

by Falkner, 2006

f_{FT} resistenza a trazione uniassiale di prima fessurazione

f_{FTu} resistenza a trazione uniassiale residua ultima

Classification for FRC market

Performance based design

cement 425.	472 kg	fine sand	0/4 850kg	slump flow diameter: 69	$0 \mathrm{mm}$
	45 1 s	coarse sand	1/8 886 kg	T50	2 sec
fly ash:	45 Kg	coarse sand	4/0 000 Kg	V-funnel time (0 min)	3.5 sec
water	2001(W/D=0.39)	hooked-end f	"ibres 65/35-50 kg	V-funnel time (5 min)	4 sec
superplast.	1.5%	nookeu enu i		L-box (standard)	h2/h1 = 1

Classification

Minimum performance for a FRC

(5) **Fibre reinforcement can substitute (also partially) conventional reinforcement at ultimate limit state** if the following relationships are fulfilled:

$$f_{R1k}/f_{Lk} > 0.4;$$
 $f_{R3k}/f_{R1k} > 0.5$

Workability, passing and filling ability

Conventional tests on fresh concrete to guarantee a homogeneous fibre distribution

The real question remains: is the mix robust enough?

A non destructive test to identify fibre distribution

A destructive test to characterize FRC anisotropy

FRC is not homogeneous and not isotropic! The inhomogeneity and anisotropic effects due to casting procedure can be taken into account by a special coefficient K that is at this time just empirical.

5.6.7 Orientation factor

$$f_{Ftsd,mod} = f_{Ftsd} / K \qquad f_{Ftud,mod} = f_{Ftud} / K$$

Isotropic fibre distribution is assumed	K = 1.0
For favourable effects	K < 1.0
For unfavourable effects	K > 1.0

TG 8.3 FRC TG 8.6 HPFRC

Precast elements interacting with the soil

Typical F-v patterns obtained in FRCPs during the CT.

Figure 5. Structural model: (a) full linear regime, (b) linear regime with cracking in R and (c) also in S.

General framework

Rovere

Ground slope

General framework

Laboratorio di Caslino d'Erba struttura di protezione per la stabilità dei pendii

Chronology

-[2007	2008	2009	2010		
		monitoring (f	ull equipment) Monit	nitoring (partial equipment)		
		-2 0 50 100 150 200 250 300 350 400 450 500 650 700 750 				

-1

Experimental programme

Experimental resuls

4 point load: activation of torsion hinges for low values of loads

CASE 1: Indefinite Plastic hinges

Anchor strand stretching vs . reference node displacement

Polypropilene fibres

CARATTERIZZAZIONE STRUTTURALE

CARATTERIZZAZIONE STRUTTURALE

CARATTERIZZAZIONE STRUTTURALE

CARATTERIZZAZIONE STRUTTURALE

CARATTERIZZAZIONE STRUTTURALE

350 300 FIBRE V CRACK REINFORCEMENT 250 CONTRIBUTION IV CRACK Load (kN) 200 ----- Dz - Thread 3_R -III CRACK OPENING 150 STEEL Dz - Thread 2_L -REINFORCEMENT II CRACK OPENING CONTRIBUTION Dz - Thread 1_C 100 . I CRACK OPENING Dz - AVERAGE 50 - - - Steel Reinforcement Ultimate Load 0 10 12 14 16 18 0 2 4 6 8 20 Vertical displacement (mm)

CARATTERIZZAZIONE STRUTTURALE CONCIO DI TUNNEL

CARATTERIZZAZIONE STRUTTURALE CONCIO DI TUNNEL

Conci di tunnel prefabbricati

3 kg

Università di Lipsia (by F. Dehn): aggiunta di fibre in polipropilene per evitare il fenomeno dello spalling esplosivo.

Linear precast elements for roofing

Pier Luigi Nervi Architecture as challenge

EF

BEE

D D

FIF

FIT

F

✓ A long history ... *Ferrocement*

"We wondered if, increasing significantly the diffusion of the steel and its percentage (i.e. reinforcement ratio), it could not be possible to create a new material characterized by a higher strength and especially a larger elasticity and elongation ...".

Pier Luigi Nervi, 1940

2.4

Exposition Palace: B Pavilion, Torino, 1949-50

FRC to substitute transverse reinforcement

Thin webbed roof elements

Bending tests on roof elements

by di Prisco, Failla, Plizzari, 2003

Test di flessione su elementi di copertura

Test data	t _j [day]	f _{cm} [MPa]	fibre	C f [kg/m ³]	М_{R,CEB} [kNm]	M_{R,EC2} [kNm]	M _{R,sper} [kNm]	Weight [kg]	failure
25/07/02	69	72.05	45/30	50	614.8 (+1.9%)	567.7 (-5.9%)	603.4	6580	lb/wing
30/07/02	56	67.00	80/30	50	634.5 (+1.5%)	567.7 (-9.2%)	625.1	6500	lb/wing
06/09/02	35	74.07	-	-	582.3 (+5.9%)	567.7 (+3.3%)	549.6	5780	lb/wing

Bending tests on roof elements

by di Prisco, Failla, Plizzari, 2003

elastic check by FE

Simplified model

Figure 2. Instrumental equipment in the central segment: (a) cross section view; (b) longitudinal projections.

with bottom LVDTs; (d) collapse views.

(b)

Figure 4. UNI test: (a) geometry and test set-up; (b) specimen image during testing.

Figure 5. Load vs. CTOD for UNI tests: (a) 45/30; (b) 80/30

Table 1. Experimental mechanical characteristics of materials.

	R _{cm}	$f_{If,m}$	$f_{eq0\text{-}0.6m}$	$f_{eq0.6-3m}$	\mathbf{f}_{yk}	\mathbf{f}_{ptk}
	MPa	MPa	MPa	MPa	MPa	MPa
R/C	82.58	-	-	-	500	1860
45/30	75.65	5.22	5.44	2.80	-	1860
80/30	73.20	5.22	7.56	8.12	-	1860

Table 2.	Computed	mechanical	characteristics of	materials.

	Ec	ν	\mathbf{f}_{c}	f _{ct}	σa	Wa	σ_{b}	Wb
	MPa		MPa	MPa	MPa	mm	MPa	mm
R/C	39193	0.2	68.54	5.02	-	-	-	-
45/30	38176	0.2	62.79	4.70	2.45	0.3	0.31	1.8
80/30	37801	0.2	60.76	4.70	3.40	0.3	2.55	1.8

Two theoretical approaches

Plane Section

Precast	Р	M _{CEB}	M_{EC2}	M _{EXP}	
Element	[kN]	[kNm]	[kNm]	[kNm]	
D 70 00	110 00	2565	2461	2022	
P /0 00	410.00	(+26.8%)	(+20.3%)	2025	
E 05 45	251 49	2383	2232	1607	
Г 93 43	551.40	(+40.4%)	(+31.5%)	1097	
E 60 45	242.01	2090	2042	1661	
F 00 43	343.01	(+25.8%)	(+22.9%)	1001	
E 110 80	342 40	2530	2294	1640	
1, 110.90	542.40	(+53.4%)	(+39.1%)	1049	

-35%

Full-size structures

Precast elements for partially precast elevated slabs

Outline

- engineering framework
- materials adopted
- characterization tests
- beam tests
- slab tests
- final deck test
- concluding remarks

POLITECNICO DI MTLATIO

Classes required by the designer for prefabricated elements and cast on site concrete

C45/55; 4c

C28/35; 3c

Table 1 Concrete mix composition for: beams and predalles (Mixture 1) and top layer slab (Mixture 2)

Mixture 1	Amount [kg/m ³]	Mixture 2	Amount [kg/m ³]
Cement CEM I 52.5R	380	Cement CEM IV/A 42.5R LH	470
Limestone filler	100		
Water SSD	190	Water SSD	188
Sand 0/4	620	Sand 0/4	1008
Mixed sand 0/12	440	Mixed sand 0/8	504
Coarse aggregates 8/15	710	Coarse aggregates 8/14	171
Superplasticizer	5.5 (slab)	Superplasticer	7.6
	7.0 (beam)	Shrinkage reducer	4.0
Steel fibres (Dramix 3D 65-60)	40-60	Steel fibres (Dramix 4D 65-60)	30/50/35
Polypropylene fibers	1.5 (slab) -		
	1.0 (beam)		

Mixture	Parameter	Unit	fct,L	<i>fR</i> ,1	fR ,2	f R,3	$f_{R,4}$
Mixture 1 - 40 kg/m ³	N	[-]	12	12	12	12	12
	mean	[MPa]	4.62	5.02	5.22	4.95	4.40
	st. dev.	[MPa]	0.63	1.31	1.48	1.36	1.24
	COV	[%]	13.63	26.11	28.26	27.49	28.17
Mixture 1 - 60 kg/m ³	N	[-]	9	9	8	7	7
	mean	[MPa]	5.56	8.97	9.38	8.33	7.25
	st. dev.	[MPa]	0.65	1.46	1.28	1.30	1.30
	COV	[%]	11.65	16.22	13.68	15.58	17.94

Table 2 Identified material properties of Mixture 1 for various amounts of fibre content

Mixture	Parameter	Unit	fct,L	f _{R,1}	f _{R,2}	J _{R,3}	$f_{R,4}$
Mixture 2 - 30 kg/m ³	N	[-]	5	5	5	5	5
	mean	[MPa]	4.23	3.90	4.92	4.62	2.51
	st. dev.	[MPa]	0.34	0.59	0.71	0.81	0.41
	COV	[%]	8.04	15.18	14.42	17.55	16.51
Mixture 2 – 50 kg/m ³	N	[-]	3	3	3	3	3
	mean	[MPa]	4.61	8.16	9.51	7.74	6.39
	st. dev.	[MPa]	0.28	1.73	0.89	1.49	1.84
	COV	[%]	6.15	21.22	9.39	19.27	28.74
Mixture 2 – 35 kg/m ³	N	[-]	12	12	12	12	12
	mean	[MPa]	5.24	5.92	7.41	5.20	3.28
	st. dev.	[MPa]	0.62	1.20	1.29	0.77	0.75
	COV	[%]	13.03	20.32	17.43	14.86	22.93

Table 3 Identified material properties of Mixture 2 for various amounts of fibre content

According to Model Code 2010

$$V_{R} = \frac{A_{sw}}{s} z f_{ywd} \cot\theta + \left[0.18 \left(1 + \sqrt{\frac{200}{d}} \right) \left[100 \rho_{l} \left(1 + 7.5 \frac{f_{Ftuk}}{f_{ctk}} \right) f_{ck} \right]^{\frac{1}{3}} + 0.15 \sigma_{cp} \right] b_{w} d$$

				ly careataica				
Specimen	$P_{cr,exp}$	$P_{cr,calc}$	$P_{cr,exp}/P_{cr,calc}$	$P_{u,exp}$	Failure	$P_{u,calc}$	$P_{u,exp}/P_{u,calc}$	
	[kN]	[kN]	[•]	[kN]	mode	[kN]	[•]	
Beam 3	847.1	818.7	1.03	884.6	S+A	724.0	1.22	
Beam 4	764.8	818.7	0.93	888.7	S+A	724.0	1.23	

Table 4 Experimentally observed and theoretically calculated cracking and failure loads for Beams 3 and 4

Note: S+A indicates combined shear failure with loss of Anchorage

$$f_{ct,fl}^{40} = \alpha_{fl}^{-1} f_{ct} = \frac{1 + 0.06h^{0.7}}{0.06h^{0.7}} \cdot 0.9 f_{ct,L}^{f}$$

$$P_{cr,calc} = 2 \frac{\frac{f_{ct,fl}^{40} h_{0}}{y_{0}} - M_{sw}}{a}$$

$$\alpha = \frac{1}{L} \sqrt{\frac{3\pi^2 EIz}{aP/2 + M_{sw}}}$$

 α equal to 0.61

Specimen	Cracking			Buckling
	P _{cr,exp}	$P_{cr,calc,k}$	$P_{cr,exp}/P_{cr,calc,k}$	P _{buckl,exp}
	[kN]	[kN]	[-]	[kN]
Slab 1	12.05	12.61	0.96	16.01
Slab 2	13.93	12.74	1.09	16.00

504.0

171.0

35.0

Mista o/8 (kg/m³)

Fibre (kg/m³)

Ghiaia 4/14 (kg/m³)

504.0

171.0

35.0

HPFRC precast elements

Comparison of two bridges (Voo/Foster, 2010)

UHPdC METHOD

UHPdC METHOD (VIEW B-B)

Comparison of two bridges (Voo/Foster 2010)

Two solutions for a 180 m long retaining wall (Voo/Foster, 2010)

Construction of retaining wall for drain channel in Ipoh, Malaysia,

Solution in conventional concrete and UHPFRC $(f_{cm} = 160 \text{ N/mm}^2)$

Results of EIC for retaining walls

Sheet piles

by Jansze et al. 2005

Fig. 3 Sheet pile geometries as a variable in the optimisation study (all 450 mm in height)

Fig. 10 Mould with strands for pile production

MATERIALS

HPFRCC

w/b=0.19 and SP/c=5.5%.

Flexural residual strengths.

Table 3. Materials costs

Conventional	VHPFRC	Steel Bars	Prestressed	Fiber Reinforced
Concrete C50/60	(fibers incl.)	(€/kg)	Tendons	Concrete
(€/m ³)	(€/m ³)		(€/kg)	(€/m ³)
50	440	0.65	1.00	150

Table 7 – Structure costs

	Material Cost (€)	Labor Cost (€)	Transport Cost (€)	Storage Cost (€)	Assembly Cost (€)	Structure Cost (€)
Traditional	22.401	21.728	5.601	6.301	7.002	63.033
New Solution	24.037	8.175	3.075	3.459	7.002	45.748

464

by Pansuk & Walraven (2007)

Mix design

Composition (kg/m ³)	0% fibres	0.8% fibres	1.6% fibres
CEM I 52.5 R	390	390	390
CEM III/A 52.5 N	558	558	558
Silica fume (50%)	102	102	102
Sand (0-2 mm)	1140	1118	1097
Steel fibres [OL13/0.16]	0	63	125
Superplasticizer	33	33	33
Free water	138	138	138

 $R_c = 140 \text{ MPa}$

Ultimate load: 91 kN Current load: 52 kN 70 kN75 kN 82 kN 91 kN

Clacestruzzo bianco

by Pansuk & Walraven (2007)

Ultimate load: 340 kN Current load:150 kN200 kN250 kN300 kN340 kN

No stirrups, 0,8% fibres

by Pansuk & Walraven (2007)

Ultimate load: 531 kN

Current load: 200 kN300 kN400 kN531 kN

No stirrups, 1,6% fibers

by Pansuk & Walraven (2007)

SCC material

	Dosage (kg/m ³)	
Cement type I 52.5	600	
Slag	500	
Water	200	
Superplasticizer	33 (l/m ³)	
Sand 0-2 mm	983	
Fibers $(l_f = 13mm;$	100	
$d_{\rm f} = 0.16$ mm)		

730-800 mm

$$\begin{split} \gamma &= 2450 - 2530 \text{ kg/m}^3 \\ R_{cm, 24h} &= 66.3 \text{ Mpa} \\ R_{cm, 7d} &= 99.1 \text{ Mpa} \\ R_{cm, 28d} &= 116.5 \text{ Mpa} \\ E_{sm} &= 45249 \text{ Mpa} \end{split}$$

4PB tests on 'structural' unnotched specimens

HPFRCC - Randomly oriented fibers

116

117

4PB tests on 'structural' unnotched specimens

HPFRCC - Oriented fibers

MATERIALS

119

AR glass textiles

Characteristic

Material	AR-glass
Fabrication technique	Leno weave
Warp wire spacing [mm]	4.9
Weft wire spacing [mm]	10.1
Warp fineness [Tex]	$2\ge 1200$
Weft fineness [Tex]	1200
Warp filament $[\mu m]$	19
Weft filament $[\mu m]$	19
Maximum tensile load on 70 mm $[kN]$	11.02

Experimental results

Nominal Stress vs. Stroke curves

Experimental results

No clear synergic effects (as the ones highlighted in direct tension)

The response of the lower glass fabric took place after the onset of a diffuse micro-cracking, that was found to be close to an equivalent strain ε^* of about 2.7%.

4PB tests on 'structural' unnotched specimens

HyFRCC: HPFRCC + 2 layers of AR glass fabrics - Randomly oriented fibers

2 layers

POLITECNICO DI MILANO

123

Specimen	Core material	Interface material
H1-P-T1-2F1*_b1_1	EPS150	-
H1-P-T1-2F1*_b1_2	EPS150	-
HI-P-11-2F1 D1_3	EP5150	-
H1-F-N-T1-2F1*_b1_1 H1-F-N-T1-2F1*_b1_2	FoamglasS3 FoamglasS3	NorphenPU NorphenPU
H1-F-N-T1-2F1*_b1_3	FoamglasS3	NorphenPU
H1-F-A-T1-2F1*_b1_1	FoamglasS3	AdesilexPG1
H1-F-A-T1-2F1 _b1_2 H1-F-A-T1-2F1*_b1_3	FoamglasS3	AdesilexPG1

POLYSTYRENE CORE

GLASS FOAM CORE

Precast roof elements: casting in the plant

Precast roof elements: real scale test

128

Roof systems are in important component of the building envelope, since they are specifically designed to separate the living spaces from the natural environment. They should ensure:

- adequate mechanical performances;
- energy efficiency;
- sound insulation;
- durability;
- aesthetics.

HOW CAN WE MEET THE REQUIREMENTS OF THE REVISED NATIONAL CODES?

S.IN.E.RG.I.E ATTI.V.E.

SISTEMA INTEGRATO SOSTENIBILE ENERGETICAMENTE

ATTIVO PER IL RINNOVO DEGLI EDIFICI INDUSTRIALI

ATTRAVERSO COPERTURE COMPOSITE

HPFRC + INSULATING CORE + TRC

- self-weight reduction to solve seismic requirements;
- fire safety improvement;

• environmental sustainability, relying both on the improvement of the thermal performances and on the design of Building-Integrated Photovoltaics (BIPV) and the use of recycled fibres;

• global cost reduction: no need of waterproofing layer

The proposal

- 2.5 m wide and 5 m long secondary prefabricated elements.
- Main features: lightness (self-weight of about 1.2 kN/m²); remarkable thermal insulation (U = 0.42 W/m²K), waterproof quality, ease of assembly, fire safety (> R30) and effective integration of photovoltaic systems.

HPFRCC - material characterization

Table 1. HPFRCC mix design.

Component	Dosage
Cement I 52.5	600 kg/m ³
Sand 0-2 mm	847 kg/m ³
Water	225 l/m ³
Superplasticizer	28 kg/m^3
Slag	500 kg/m^3
Steel fibers	100 kg/m ³

Table 2. HPFRCC reference tensile strengths.

	Stress [MPa]	Crack opening w [mm]
$f_{\text{Ftsk}}\left(SLS\right)$	6.96	0.5
f_{Ftuk} (ULS)	3.34	2.5

TRC - material characterization

Longitudinal bending tests - setup

Longitudinal bending tests

- - Remarkable strength and ductility levels: peak loads were about 3.5 to 4 times higher than the one associated to the Ultimate Limit State (ULS).
- Test number 2 was halted right after the widening of some shear cracks, originally developed on an HPFRCC web, probably due to a poor control of the wall thickness and an uneven distribution of the fibrous reinforcement.

Transverse bending tests - setup

Transverse bending tests

- ✓ Ultimate loads about 4 to 4.5 times higher than the ULS design one.
 ✓ Peak load of test number 1 corresponded to the localization of a flexural crack,
- ✓ Test number 2 an early failure occurred due to the delamination of the TRC bottom layer (caused by the introduction of an alternative production procedure).

Constitutive laws for the cement-based materials

Mechanical characteristics of polystyrene

NUMERICAL SIMULATIONS: HPFRC "structural" plates and sandwich composites

[UNIT] N., mm [DATA] Shucharal Nonlinear., Crack 1-STCRCK., Load Step 284(56.8)
by F. Müller, C. Kohlmeyer, J. Schnell, 2012

No. Failure mode

RESEARCH FRAMEWORK

A.C.C.I.DE.N.T

Advanced Cementitious Composites In DEsign and coNstruction of safe Tunnel

Meso-structure

SUPSI

University of Applied Sciences of Southern Switzerland

Material

Structure

Structural targets

- ✓ Internal explosion with detonation: tunnel segment resisting to a blast wave caused by a terroristic attack with 25 kg of TNT
- ✓ Fire: acceptable damage (no interruption for serviceability conditions) in case of T = 600°C for about 2 hours on the segment surface
- ✓ Serviceability and Ultimate loads considered in the consolidated construction experience.

UHPFRC: fire resistant advanced material

D.M. 14/01/2008: Classification and required performance

Tabella 3.5.IV - Livelli di prestazione in caso di incendi

	Livello I	Nessun requisito specifico di resistenza al fuoco dove le conseguenze del collasso delle strutture siano accettabili o dove il rischio di incendio sia trascurabile;
	Livello II	Mantenimento dei requisiti di resistenza al fuoco delle strutture per un periodo sufficiente a garantire l'evacuazione degli occupanti in luogo sicuro all'esterno della costruzione;
	Livello III	Mantenimento dei requisiti di resistenza al fuoco delle strutture per un periodo congruo con la gestione dell'emergenza;
	Livello IV	Requisiti di resistenza al fuoco delle strutture per garantire, dopo la fine dell'incendio, un limitato danneggiamento delle strutture stesse;
	Livello V	Requisiti di resistenza al fuoco delle strutture per garantire, dopo la fine dell'incendio, il mantenimento della totale funzionalità delle strutture stesse.
,		

Tabella 3.6.I - Categorie di azione dovute alle esplosioni

Categoria di azione	Possibili effetti	
1	Effetti trascurabili sulle strutture	
2	Effetti localizzati su parte delle strutture	
3	Effetti generalizzati sulle strutture	

Segment: Materials

Concrete:	SFRC	HPFRCC	
E _c	40000	45000	
√ ρ	24 10-10	25 10 ⁻¹⁰	
$\checkmark f_{c,peak}$	-71	-115	
$\checkmark \varepsilon_{c,peak}$	-0.0035	-0.003	
√f _{ct,peak}	4.55	7	
$\checkmark \mathcal{E}_{ct,peak}$	0.0001	0.005	
$\checkmark f_{R1}$	4.84	12	
$\checkmark f_{R2}$	4.08	8.4	
(COD2.=.2.5.mm)	-	5	
∠ E I peak	-	0.00011	

Prototype Tunnel Segment

Structural design model

MODEL ASSUMPTIONS

Two half rings with masonry layout

- Hinged beam to represent segment
- ✓ **Rotational spring** for longitudinal joints
- ✓ Shear spring for circumferential joint
- ✓ **Radial and tangential springs** for soil

MODEL PARAMETERS

✓ N. of element per segment :	12
✓ N. of element per k-segment :	4
✓ Length of beam element:	0.2945
✓ Total N. of elements:	128

m

Target? Segment: Reference geometry and steel reinforcement

Traditional Solution

Innovative Solution

Thanks for your kind attention!

